Nuclear and membrane progestin receptors in the European eel: Characterization and expression in vivo through spermatogenesis.

نویسندگان

  • Marina Morini
  • David S Peñaranda
  • María C Vílchez
  • Rasoul Nourizadeh-Lillabadi
  • Anne-Gaëlle Lafont
  • Sylvie Dufour
  • Juan F Asturiano
  • Finn-Arne Weltzien
  • Luz Pérez
چکیده

Characterization of all the progestin receptor genes (PRs) found in the European eel has been performed. There were five membrane PRs (mPRs): mPRα (alpha), mPRAL1 (alpha-like1), mPRAL2 (alpha-like2), mPRγ (gamma), mPRδ (delta) and two nuclear PRs (nPRs or PGRs): pgr1 and pgr2. In silico studies showed that the C and E(F) domains of Pgr are well conserved among vertebrates whereas the A/B domain is not. Phylogeny and synteny analyses suggest that eel duplicated pgr (pgr1 and pgr2) originated from the teleost-specific third whole genome duplication (3R). mPR phylogeny placed three eel mPRs together with the mPRα clade, being termed mPRα, mPRAL1 and mPRAL2, while the other two eel mPRs clustered with mPRγ and mPRδ clades, respectively. The in vivo study showed differential expression patterns along the brain-pituitary-gonad axis. An increase in nPR transcripts was observed in brain (in pgr1) and pituitary (in pgr1 and pgr2) through the spermatogenesis, from the spermatogonia B/spermatocyte stage to the spermiation stage. In the testis, mPRγ, mPRδ and pgr2 transcripts showed the highest levels in testis with A spermatogonia as dominant germ cell, while the highest mPRα, mPRAL1 and mPRAL2 transcripts were observed in testis from spermiating males, where the dominant germ cell were spermatozoa. Further studies should elucidate the role of both nuclear and membrane progestin receptors on eel spermatogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis.

Estradiol (E2) can bind to nuclear estrogen receptors (ESR) or membrane estrogen receptors (GPER). While mammals possess two nuclear ESRs and one membrane GPER, the European eel, like most other teleosts, has three nuclear ESRs and two membrane GPERs, as the result of a teleost specific genome duplication. In the current study, the expression of the three nuclear ESRs (ESR1, ESR2a and ESR2b) an...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel.

Meiosis is an indispensable process of sexual reproduction. However, detailed information on the regulatory mechanisms that initiate meiosis is not available. Progestins are important steroids regulating final maturation in male and female vertebrates. In male teleosts, it is known that progestin induces spermiation and sperm maturation. However, a role for progestin in early spermatogenesis or...

متن کامل

Trypsin is a multifunctional factor in spermatogenesis.

Trypsin is well known as a pancreatic enzyme that is typically secreted into the intestine to digest proteins. We show in our current study, however, that trypsin is also a key factor in the control of spermatogenesis. A progestin in teleost fish, 17alpha, 20beta-dihydroxy-4-pregnen-3-one (DHP), is an essential component of the spermatogenesis pathway, particularly during the initiation of the ...

متن کامل

Spermatogenesis-preventing substance

Spermatogenesis, the formation of sperm, is a complex developmental process that begins with the mitotic proliferation of spermatogonia and proceeds through extensive morphological changes that convert the haploid spermatid into a mature, functional spermatozoon. Although the process of spermatogenesis is the same in both mammalian and nonmammalian vertebrates, its control mechanisms are not we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comparative biochemistry and physiology. Part A, Molecular & integrative physiology

دوره 207  شماره 

صفحات  -

تاریخ انتشار 2017